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SUMMARY

1. Biological assemblage surveys primarily aim to characterise species composition and

relative abundance at one or more spatial or temporal scales. Data interpretation and

conclusions are dependent on how well samples characterise the assemblage of interest.

2. Conventional measures of data quality, e.g. standard deviations or coefficients of

variation, were designed for single variable estimation, and they are either insufficient or

invalid for assessing the quality of data describing entire assemblages. Similarity indices

take species composition and relative abundance into account and may be used to

effectively measure and control the quality of data used to characterise assemblage

structure.

3. The average Jaccard coefficient (JC) calculated across multiple pairs of replicate samples,

i.e. autosimilarity JC (AJC), is conceptually and numerically related to the average

coefficient of variation in the densities of all species recorded, a measure of sampling

precision, and to the proportion of total species richness sampled, a measure of sampling

accuracy.

4. We explored how AJC can be used to assess the effect of different potential sources of

error on the quality of assemblage survey data, including the sampling effort used both

within regions and at individual sites, the individuals collecting samples, sub-sampling

procedures, and consistency of taxon identification.

5. We found that the autosimilarity-based approach overcomes most weaknesses

associated with conventional measures of data quality and can be used to effectively

measure and control the quality of assemblage survey data.
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Introduction

Biological assemblage surveys provide information on

species composition and their relative abundance at

various spatial and temporal scales. The information

generated is used to address a variety of questions in

ecology, natural resources and environmental man-

agement, including (i) determining spatial patterns of

species diversity and species composition in relation

to environmental factors (Gauch, 1982; ter Braak,

1987), (ii) testing ecological hypotheses and theories

(MacArthur, 1965; Connell, 1978; Ricklefs & Schluter,

1993; Statzner, Resh & Roux, 1994) and (iii) detecting

and quantifying the effects of human activities on

ecosystem health (Rosenberg & Resh, 1993; Hawkins

et al., 2000; Wright, Sutcliffe & Furse, 2000).

Broad-scale surveys and long-term monitoring

programs have greatly increased over the past two
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decades. Sampling designs used in these programs

often vary considerably in one or more of the

following factors: the number and distribution of

sampling sites, the sampling effort used at each site,

the type of habitats sampled, the sampling method

used, the frequency of sampling, the person collect-

ing samples, the taxonomic resolution used during

specimen identification and the person identifying

specimens. A variety of errors and biases can be

introduced into data at every step of their collection

and analysis. The increasing need to compare and

integrate both raw data as well as the results derived

from different studies and monitoring programs

requires that we specify the degree to which data

collected in different ways are of comparable quality

[Intergovernmental Task Force on Monitoring Water

Quality (ITFM), 1995; Carter & Resh, 2001; Houston

et al., 2002]. Measuring and controlling data quality

has therefore become increasingly important for both

basic ecological studies and bioassessments (e.g.

Dines & Murray-Bligh, 2000; Humphrey, Storey &

Thurtell, 2000; Mucina, Schaminée & Rodwell, 2000;

Clarke et al., 2002).

The concept of data quality can sometimes be

ambiguous because its definition depends on both the

context and goal of a particular study. However, in a

statistical sense, data quality consists of two elements:

accuracy and precision. Accuracy means how close the

observed value is to the true value, whereas precision

measures how close repeated measurements are

(Sokal & Rohlf, 1987; Zar, 1999). In assemblage

surveys, the true values of many variables are not

available, because obtaining them may require a

census over the whole study area, and what is

actually meant by accuracy has not been well defined.

As a result, precision is often the only measure of data

quality used and has been typically evaluated with

the standard deviation (SD) or the coefficient of

variation (CV ¼ SD=�XX) of the variable of interest.

Both the SD and CV have been commonly used to

measure the precision of estimating individual assem-

blage attributes and biotic indices (e.g. Turner &

Trexler, 1997; Rabeni, Wang & Sarver, 1999; Clarke

et al., 2002; Houston et al., 2002). Diamond, Barbour &

Stribling (1996) provided a detailed overview about

how the CV could be applied to data quality control in

aquatic bioassessment.

Many factors that affect the quality of data in

assemblage surveys have been addressed, including

the choice of sampling sites within a study region

(Stevens, 1994; Stevens & Olsen, 1999), sampling effort

used at the local scale (e.g. Furse et al., 1981; Mackey,

Cooling & Berrie, 1984; Angermeier & Smogor, 1995),

who collected the samples (Mackey et al., 1984;

Humphrey et al., 2000; Clarke et al., 2002) and labor-

atory procedures followed when processing samples

(Doberstein, Karr & Conquest, 1999; Dines & Murray-

Bligh, 2000). However, two major challenges remain.

First, the effects of the different factors on data quality

have not been examined systematically based on a

common measure of data quality and therefore their

relative importance can not be evaluated. For example,

how species misidentifications, the number of sites

sampled in a region and the sampling effort used at

each site affect data quality has not been assessed on

the same basis. Second, commonly used measures of

data quality, such as the SD and CV, may be insuffi-

cient or irrelevant when assessing assemblage data

quality for at least three reasons:

1. Assemblage surveys are usually designed to

characterise species composition and relative abun-

dance at a spatial scale of interest (e.g. stream reach,

catchment or ecoregion). However, no single assem-

blage attribute can represent how well we have

measured overall assemblage structure. For example,

similar species richness can occur across a set of

samples that vary considerably in species composi-

tion, and similar densities can occur across samples

that differ greatly in both species richness and

composition. The difference between characterising

multivariate systems and estimating a single variable

has been largely ignored, as pointed out by Kenkel,

Juhasz-Nagy & Podani (1989), and was only ad-

dressed recently by Cao, Williams & Larsen (2002a).

Assemblage data are often analysed with multivariate

approaches, such as ordination and cluster analysis

(ter Braak, 1987; Legendre & Legendre, 1998), but

precision estimated for individual attributes or indices

does not provide a basis to assess the quality of

assemblage data used in multivariate analysis. For

example, there is no necessary relationship between

high precision in species richness estimates and either

the stability or statistical significance of outcomes

derived from multivariate analysis.

2. When assemblage data are collected for estimat-

ing different biotic indices and other assemblage

attributes, the variability in those measures often

differs (Resh & McElravy, 1993; Doberstein et al., 1999;
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Sovell & Vondracek, 1999). Thus, data quality needs to

be controlled individually for each index or attribute,

but doing so is not possible because these measures

are normally derived from the same raw data.

Consequently, the precision of different indices and

assemblage attributes will differ under the same data-

quality procedure.

3. Estimates of many assemblage attributes and

biotic indices are dependent on sampling effort. We

refer to ‘sampling effort’ as the sampling area or

volume or the number of individuals counted. As the

size of each sampling unit is standardised, sampling

effort can also be expressed as the number of

sampling units pooled. A sampling unit may be a

plot within a site or a site within a region. Measures

whose values can change with sampling effort include

species richness (Colwell & Coddington, 1994; He,

Legendre & Bellehumeur, 1994), diversity indices

(Hughes, 1978; Pinder et al., 1987) and biotic indices

(Pinder et al., 1987; Stark, 1993). Precision of individ-

ual assemblage attributes, diversity indices and biotic

indices can also be dependent on sampling effort,

which means that some measures of precision will be

sampling-effort specific.

A recently developed concept, autosimilarity (Cao

et al., 2002a), may provide a way of measuring and

controlling the quality of assemblage survey data at

all major steps of data collection and analysis. Auto-

similarity is the average compositional similarity

observed across multiple pairs of replicate samples

(Cao et al., 2002a). We define the term replicate

sample as a single sample unit (e.g. a quadrat or

plot), or a given number of sample units pooled, or a

fixed number of individuals counted. Autosimilarity

can be measured with various similarity indices,

although the Jaccard coefficient (JC) has especially

useful properties. The level of autosimilarity indicates

how well a set of sample units pooled characterises

the whole assemblage.

In this paper, we (i) demonstrate how particular

measures of autosimilarity are explicitly related to

both accuracy and precision for multivariate systems

in both conceptual and numerical terms, (ii) illustrate

how autosimilarity measured with the Jaccard coeffi-

cient (AJC) can be used for assessing and controlling

the effects of all major sources of error in assemblage

surveys with special reference to aquatic bioassess-

ment and (iii) discuss the practical implications and

limitations of this data-quality control approach.

Using autosimilarity for data quality control:

conceptual and numerical justifications

and its estimation

Conceptual considerations

An assemblage survey usually yields a species by site

matrix. From this matrix, a variety of biotic and

diversity indices can be derived and multivariate

analysis can also be conducted. The samples used to

populate this matrix should therefore accurately and

precisely represent both species composition and their

relative abundances. In this context, precision refers to

the similarity in species composition and relative

abundance between any two replicate samples, which

is exactly what autosimilarity measures. Later we will

show that AJC is also a numerical extension of the

coefficient of variation in multivariate systems.

The most accurate sample is expected to capture

every species in the sampled assemblage and describe

the relative abundance of each species. Species relative

abundance in an assemblage usually stabilises with

less sampling effort than is required to capture all

species (Angermeier & Smogor, 1995; Cao, Williams &

Bark, 1997). Therefore, the percentage of the total

species richness sampled (%TSR) is a simple measure

of accuracy. For example, a sample capturing 95% TSR

at a site more accurately represents the local assem-

blage than a sample capturing 20% TSR. Furthermore,

estimates of %TSR are not based on a random subset of

the total species richness (TSR) in an assemblage.

Instead, common species are always collected first.

Therefore, X% TSR basically means the most common

X% of species in the assemblage have been captured.

The difficulty is that TSR is usually unknown.

Although numerous statistical methods have been

proposed to estimate TSR from sampling data (Colwell

& Coddington, 1994; Williams, Nichols & Conroy,

2001), it remains a great challenge to estimate TSR

accurately and precisely based on a small set of

samples (Longino, Coddington & Colwell, 2002; Wag-

ner & Wildi, 2002; Petersen & Meier, 2003). However,

previous studies have demonstrated that %TSR is

strongly and consistently related to AJC across a

variety of assemblages (Cao, Larsen & Hughes,

2001b; Cao et al., 2002a). This relationship is quite easy

to understand. Assuming that the sampling method

used does not selectively miss any species, 100% TSR is

reached when all replicate samples share every species.

In contrast, when few species are common among
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replicate samples, a low %TSR is expected. Estimates

of the %TSR–AJC relationship from samples is also

stable unless TSR is very low (Y. Cao, unpubl. data). As

a result, both sampling accuracy and precision can be

measured with a single statistic, autosimilarity (AJC).

Among numerous similarity indices available (Leg-

endre & Legendre, 1998), the JC is especially useful for

measuring autosimilarity because of its simplicity,

statistical explicitness, consistent correlation with

%TSR (Cao et al., 2002a) and explicit linkage with

the average CV of species abundance across all species

(see below). Other binary indices, such as the Sørensen

Index, might also be of potential use, but their

relationships with %TSR are uncertain and they can

not be clearly related to the average CV. When relative

abundance is considered important, abundance-based

similarity indices, such as the Bray-Curtis Index, may

be applied. However, their relationships with %TSR

can be complex and inconsistent across assemblages.

The choice of data transformation, e.g. log (x) versus

�x, can further complicate the interpretation of auto-

similarity values. As a result, at this time we focus only

on the use of the JC.

Numerical considerations

Here, we demonstrate how AJC can be numerically

related to the mean CV of species abundance across

all species. Assuming that only two replicates are

collected from a site containing n species, we have a

replicates · species matrix as below:

Species Replicate 1 Replicate 2
1 X11 X21

2 X21 X22

� � �
n X1n X2n

Xij is the number of individuals of species j in repli-

cate i. For species j, we can calculate the SDj and CVj

across the two replicates:

Given Xj ¼ X1jþX2j

2 , then

SDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1j � �XXjÞ2 þ ðX2j � �XXjÞ2

q

¼ jX1j � X2jj �
ffiffiffiffiffiffiffi
0:5

p
ð1Þ

and

CVj ¼
SDj

�XjXj
¼

ffiffiffiffiffiffiffi
0:5

p

0:5

jX1j � X2jj
X1j þ X2j

� �
ð2Þ

An average CV across all n species gives an overall

evaluation of precision. We then have:

CV ¼ 1

n

X
CVj

¼
ffiffiffi
2

p

n

X jX1j � X2jj
X1j þ X2j

ð3Þ

When we consider species presence–absence only:

if c species are common to both replicates,

Xc

j¼1

jX1j � X2jj
X1j þ X2j

¼ 0

if a species are present in replicate 1 only,

Xa

j¼1

jX1j � X2jj
X1j þ X2j

¼ a

if b species are present in replicate 2 only,

Xb

j¼1

jX1j � X2jj
X1j þ X2j

¼ b

Given that a þ b þ c ¼ n, we have:

CV ¼
ffiffiffi
2

p

n
ða þ bÞ ¼

ffiffiffi
2

p
1 � c

a þ b þ c

� �
ð4Þ

Therefore,

CV ¼ ð1 � JCÞ � C where C ¼ p
2 ð5Þ

As C is a constant, we divide this CV by C to make

it range between 0 (least precision) and 1 (most

precision). CV/C is the dissimilarity form of JC.

Estimating AJC from samples

When N sample units or individuals are collected,

they can be randomly divided into m distinct groups

with n units per group (m ¼ N/n). Each group is

pooled to create a composite sample. AJC is obtained

by averaging JC for all possible comparisons of these

composite samples. However, with an increase in n,

the number of distinct groups (m) rapidly decreases.

At 1/2 N-units of sampling effort, only two distinct

samples can be created. Because the JC value can be

dependent on how the N sample units are divided, a

re-sampling procedure can be used to overcome this

difficulty by repeatedly and randomly dividing the

N sample units into two groups. AJC is then

obtained by averaging the values of the JC from
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these different random combinations (Cao et al.,

2002a).

Because of heterogeneity in species composition

across samples, the estimation of AJC may not be

precise when the number of sample units or the

number of individuals is too small. A minimum

number of sample units (e.g. >10) or individuals (e.g.

300) should be used to allow estimation of AJC from a

large number of combinations, but the exact number

will depend on the level of AJC desired. We address

this issue further later in the paper.

Using AJC to measure and control data quality

in assemblage surveys

Precision and accuracy take different forms at differ-

ent steps of data collection or for different sources of

error. We will therefore independently establish the

relevant criterion of data quality and describe how

AJC can be used to measure and control data quality

for each major data collection step and source of error.

Where possible, we used real data to illustrate the

procedures.

Characterising regional assemblages

Regional surveys are used to determine the overall

condition of biological resources or the distribution of

site conditions within a large area. Two major ques-

tions that arise when designing a survey are: how

many sites should be sampled and what specific sites

should be selected? Both design considerations should

be addressed in such a way that the sampled sites

adequately characterise both species composition and

the distribution of species within the region of

interest. Two types of survey designs have been

commonly used for choosing sampling sites (Stevens,

1994). An empirical design targets sites of different

types in proportion to their occurrences in the envi-

ronment. In a statistical design, every element in a

‘population’, such as all streams or lakes in a region,

has some chance to be sampled; and site selection is

carried out by a randomisation procedure (Stevens,

1994; Hughes, Paulsen & Stoddard, 2000). Both

designs have their advantages and disadvantages,

however neither answers the question of how many

sites should be sampled. At the regional scale, each

sampling site can be regarded as a sample unit. When

N sites are selected and sampled, based on either the

empirical or statistical designs, AJC can be calculated

following the re-sampling procedure described ear-

lier. The level of AJC indicates how well the biota in

the region is characterised by the N sites. If AJC ¼ 1.0,

all species present in the region were collected at the

sample sites, and those sites thus represent the whole

region with 100% precision and accuracy. The actual

level of AJC targeted will be <1 because of resource

constraints. Because large-scale surveys often cover

large regions (e.g. Wright, 1995; Hawkins et al., 2000;

Reynoldson, Rosenberg & Resh, 2001), the desired

level of AJC may not be reached with 1 year of

sampling. In such cases, more sampling sites can be

added in subsequent years until a target level of AJC

is reached.

A regional survey can be further improved by

applying the same AJC standard to sub-regions, e.g.

ecoregions (Omernik, 1995; Omernik & Bailey, 1997)

or catchments. Such standardisation would improve

data comparability among the sub-regions and use

research resources more effectively (i.e. by avoiding

over-sampling in one sub-region and under-sampling

in another). Consider two sub-regions A and B. In

region A, species composition varies more substan-

tially across sites than in region B. The former

logically will require more sites to be characterised

than the latter. Below, we use a real data set to

illustrate how this procedure can be applied to

measure and control data quality in the regional

surveys.

More than 2000 macroinvertebrate samples were

collected from North Carolina streams between 1983

and 1992 (Lenat, 1993). We used a subset of 209

samples from reference sites to determine how well

these samples represented reference conditions in the

three ecoregions of the state: Coastal Plain (33 sam-

ples), Mountain (142 samples) and Piedmont (34

samples). We estimated AJC at all possible sampling

levels for each of the three regions following the

procedure described earlier (Fig. 1). The Mountain

region reached the highest AJC (0.72). Piedmont and

Coastal Plain ecoregions were represented less well,

with AJC values of 0.63 and 0.57, respectively. These

differences could have resulted from either different

numbers of sites in the three ecoregions or differences

in ecological heterogeneity within each ecoregion or

both. We therefore compared the three ecoregions

based on the same number of samples. With N ¼ 32,

the Coastal Plain reached a slightly lower AJC (0.56)
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than the Mountain (0.61) and Piedmont (0.63) ecore-

gions. The observed differences in AJC values among

the three ecoregions appeared to result mainly from

the different numbers of sites sampled. However, the

lower value of AJC for the Coastal Plain implies that

streams in that region may be more ecologically

heterogeneous than streams in the other two regions

and would therefore imply that this ecoregion would

require more samples to adequately characterise it.

Characterising sites and comparing samples across sites

Site sampling should accurately and precisely char-

acterise species composition and relative abundance

within local assemblages and do so equally well

across all sites to ensure data comparability. In other

words, data quality associated with site sampling

depends on two factors: how to standardise sampling

effort and at what level. A standard sampling effort

(e.g. area sampled or the number of individuals

counted) often yields different AJC values and %TSRs

at different sites (Cao et al., 2002a). This inequality of

sampling accuracy and precision across sites will

often result in underestimates of the true difference in

richness and composition among sites because more

diverse assemblages will be underrepresented by a

standard sample relative to less diverse assemblages.

For example, a Surber sample might capture 80% of a

total of 20 taxa (16) at one site, but only 30% of a total

of 60 taxa (18) at a more species-rich site, at which

most of the taxa are typically rare. The observed

richness ratio between these two sites is 16/18 or 8/9,

whereas the true ratio is 20/60 or 1/3. Standardising

sampling effort on AJC, rather than sampling area or

the number of individuals, can overcome this diffi-

culty (Cao et al., 2002a). It follows that the level of AJC

on which sampling effort is standardised can signifi-

cantly affect our ability to biologically distinguish

sites from one another. Use of a high AJC level for

standardisation means that most species are included

in comparisons, which should therefore result in

clearer and more accurate descriptions of the true

biological differences among sites (Cao et al., 2002b).

Below we used a macroinvertebrate data set to

illustrate the procedure of standardising sampling

effort on AJC in site sampling and to evaluate the AJC

levels reached by commonly used sampling efforts.

Two stream sites in Idaho (ID-1 and ID-2) were

extensively sampled in 2000 by six different field

crews (Henderson et al., 2000). At each site, four riffle

units were delimited and two Surber samples were

collected from each riffle for a total of eight Surber

units from each site. Samples were pooled in the field

and all macroinvertebrates in the sample were later

identified to the lowest possible level. Eighty-one taxa

were recorded from all six sets of samples (48 Surber

samples in total) at ID-1, and 97 taxa were collected at

ID-2. Use of the Jackknife-2 method (Colwell, 1998) to

estimate total taxa richness (TTR) resulted in estimates

of 95 taxa at ID-1 and 120 taxa at ID-2. Jackknife-2 has

been reported to work well at high sampling efforts

(Palmer, 1990; Baltanás, 1992).

Using the re-sampling procedure described earlier,

we calculated AJC at different fixed counts for each

site in the two data sets. This analysis led to the

following observations. First, the same sampling effort

resulted in different values of AJC at different sites

(Fig. 2a), indicating that different fixed counts would

be required to obtain the same AJC level. For example,

an AJC of 0.65 required 200 counts on average at ID-1,

but about 800 counts at ID-2. Second, %TTR was

strongly and consistently correlated with AJC at both

sites (Fig. 2b), implying that the same AJC correspon-

ded to similar %TSRs. Third, 100-count subsampling

commonly used in bioassessment programs (Carter &

Sampling effort (number of sites combined)

A
JC

Mountain
Coastal plain

Piedmont

Fig. 1 Autosimilarity measured with Jaccard coefficient (AJC)

increased with sampling effort (number of sites combined) in

three ecoregions of North Carolina, but reached different AJC

levels for the same sampling effort, indicating that these ecore-

gions were not characterised equally well by the sampling data.
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Resh, 2001) resulted in AJC values of 0.56 and 0.59

and %TTR estimates of 19 and 28%. 500-count

subsamples resulted in AJC values of 0.65 and 0.71

and %TTR values of 37 and 45%.

We also examined the effect of sampling effort on

the CV of taxa richness. All individuals from ID-1

were randomly divided into multiple, distinct fixed-

count subsamples at 10 levels of sampling effort

(100–1000 counts at intervals of 100). Mean taxa

richness per subsample and standard deviations

were calculated. The CV significantly decreased with

increasing fixed counts (Fig. 3) implying that when

giving a CV value for taxa richness, one needs to

specify the sampling effort used (e.g. CV ¼ 0.15 for

100 counts). The CV value alone is difficult to

interpret. For example, is a CV value of 0.2 in taxa

richness precise? It may be, if it is based on 100

counts, but it might not be if based on 500 counts.

Even with known sampling effort, it remains difficult

to compare CV values from different studies. For

example, does a CV of 0.10 in taxa richness based on

500 counts in one study imply higher precision than

a CV of 0.15 based on 300 counts in another study?

We do not know. In contrast, a high AJC (e.g. 0.9)

always means high accuracy and high precision, and

vice versa, regardless of the number of individuals

counted or sample units pooled. This is another

advantage of AJC over the CV in addition to its

explicit linkage with %TSR.

As is the case for regional surveys, what AJC level

is sufficient for inter-site comparisons will be

dependent on the objectives of particular studies

and the resources available. However, a low AJC

level means a large proportion of the species pool

was not sampled. Low levels of AJC may not affect

the detection of strong ecological patterns or biolo-

gical responses to environmental gradients, but they

may prevent us from recognising weaker patterns or

gradients or the initial stages of degradation or

recovery. In addition, a low AJC would limit both

the comparability of the data with other data sets

and the general value of assemblage data in

A
JC

T
S

R

AJC

ID-1

ID-2

ID-1

ID-2

(a)

(b)

Fig. 2 Autosimilarity measured with Jaccard coefficient (AJC)

increased with sampling effort (fixed-count) at two Idaho stream

sites (a) and AJC is strongly and consistently correlated with

%TSR (b).

Fig. 3 The coefficient of variation (CV) of taxa richness per

fixed-count sample decreased with increasing sampling effort at

one Idaho stream site (ID-1).
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addressing many general ecological questions, such

as how species turnover rates and biodiversity

patterns vary with landscapes and other environ-

mental variables.

Effects of sample collectors

Long-term monitoring and large-scale surveys often

involve multiple sample collectors. Technical training

is usually given to ensure collectors follow the same

operation procedures as much as possible (Barbour

et al., 1999). However, it is important to know how

much variation in data values is associated with

inconsistencies among different collectors or the same

collector over time.

This issue has been addressed in several studies for

assemblage attributes and biotic indices. For example,

Reynoldson et al. (2001) assessed the effect of different

collectors on estimates of total number of individuals

and taxa richness by conducting ANOVAANOVAs. Clarke

(2000) reported that 12% of the total sampling stand-

ard deviation in taxon richness was attributed to

collectors. Clarke et al. (2002) examined the effect of

collectors on two biotic indices (the number of taxa in

Biological Monitoring Working Party score system and

Average Score Per Taxon) and reached similar con-

clusions.

The AJC can be used to assess the effect of collectors

on species composition in samples. Inconsistencies in

sampling may increase the variation in both species

composition and relative abundance among replicates

(i.e. decreasing precision). Consistent, but non-stand-

ard sampling can reduce accuracy. AJC calculated for

multiple replicates collected by a single collector

quantifies the precision of the collector. AJC calcula-

ted for a set of replicate samples collected by a group

of collectors quantifies the precision across the group.

However, in this case, accuracy is difficult to define

because we do not know the true assemblage. In such

a case, the sample collected by an experienced

ecologist (trainer) may be used as a reference against

which performance of others can be assessed. A

variety of significance tests, including randomisation

tests, could be applied here to test for differences

among individuals.

We used the Idaho data set described earlier to

illustrate how AJC can be used to assess the perform-

ance of sample collectors. As the eight Surber samples

from each collector were pooled in the field, it was not

possible to examine the precision and accuracy of

collecting individual Surber samples. However, we

conducted similar analyses on fixed-count subsamples

taken from the pooled samples. The six collectors were

treated equally, i.e. they were not identified as trainers

or trainees. First, we defined a ‘reference sample’ and

‘reference subsample’. Given that the complete taxon

list was not available, we pooled all the samples except

the one from the collector being evaluated to create a

reference sample so that the reference was independ-

ent on the collector. Then, we randomly drew a fixed-

count sample without replacement from the reference

sample, taking it as a ‘reference subsample’. A random

fixed-count subsample was also drawn from the

collector’s sample. JC was calculated between these

two subsamples. This process was repeated 1000 times

to obtain AJC at each sampling level, which ranged

from 100 to 2000 counts. In parallel, we established a

taxon accumulation curve for each collector by ran-

domly re-sampling his/her sample (1000 runs).

Differences in AJC among the six collectors were

small, 0.04–0.08 at ID-1 and 0.05–0.07 at ID-2

(Fig. 4a,b), implying that the performances of the six

collectors were generally consistent. The taxon accu-

mulation curves showed a similar pattern (Fig. 4c,d),

but there were some subtle differences. At ID-1,

collectors 3 and 6 produced similar richness curves,

whereas their AJC curves differed considerably. At

ID-2, collector 3 collected fewer taxa than any other for

the same fixed-count, but his AJC curve was similar.

We also noted that the differences among collectors

increased at higher sampling efforts, suggesting that at

low sampling effort, the effect of collectors could be

easily overridden by other error sources, such as

random sampling error and the effect of heterogeneity.

Sub-sampling

The number of individuals in a macroinvertebrate

sample is sometimes so large that collections must be

sub-sampled. Ideally, a subsample should accurately

represent the whole sample. Two factors influence

data quality in this step: (i) subsamples may not be

drawn at random and (ii) the subsample may be too

small to characterise the whole sample. As we have

addressed the second question earlier in this paper,

we focused on the first question below.

In the Idaho data, approximately 500-count sub-

samples were manually drawn from each sample first
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and then the rest of each sample was fully processed.

We tested if the first approximately 500 individuals

represented a random subsample as follows. Two

thousand subsamples of the same size as the first

subsample were randomly drawn from the whole

sample. We then calculated JC between each of these

subsamples and the whole sample. These 2000 JC

values were then ordered from the lowest to the

highest, and the 100th and 1900th values were taken as

the lower and upper 95% confidence limits of JC

estimates, respectively (see Pillar, 1998). The JC value

between the first manually derived subsample and the

whole sample was also calculated and was compared

against the 95% confidence limits. The lower and

upper 95% confidence limits were also determined for

taxon richness in a similar way. There was no signi-

ficant difference between the first subsamples and the

random subsamples for either taxa richness or JC

except for Collector Five at ID-1, whose subsample was

significantly different, but only slightly lower, than the

random subsamples in both measures (Table 1). This

result indicates that errors associated with the labor-

atory subsampling procedure appeared to be random

and did not affect data quality in any significant way.

Taxa identification and counting

Species can be misidentified and miscounted, which

can affect data quality. A similarity index, such as the

Jaccard coefficient, can be used for data-quality control

at this final step of data collection. If two taxonomists,

A and B, agree on all N species, JC ¼ 1; if they disagree

on n species, JC ¼ 1 ) (n/N). If taxonomist A acts as

the reference, JC is the proportion of all species that

were correctly identified by B. Multiple samples can be

used to obtain an average JC for assessing the quality

of species identifications by taxonomist B.

The U.K. Environment Agency implemented data-

quality control for taxa identification and counting in

their RIVPACS program (Dines & Murray-Bligh,

2000). The agency re-examined 60 samples each year

from each regional laboratory and calculated the

average missing taxa per sample. Two taxa were

recommended as the maximum number allowed to be

missed per sample. If 40 taxa are present in a sample,

two missing taxa is equal to a JC of 0.95 (38/40),

however if 20 taxa are present, the JC is equal to 0.90

(18/20). Thus, JC is a better measure of data quality

for taxon identification than the absolute number of
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Fig. 4 The mean Jaccard coefficient (JC)

between a random sub-sample from a

collector and a random sub-sample from

the reference sample varied among

collectors and with increasing sampling

effort at ID-1 (a) and ID-2 (b). Taxa

richness (TR) showed a similar trend

(c and d).
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taxa missed because it is not affected by the number of

taxa in a sample. The Bray-Curtis index has been

similarly used for data-quality control in taxa identi-

fication by Unicomarine Ltd (1996) for benthic inver-

tebrates and Kelly (1999, 2001) for benthic diatoms.

The taxonomic resolution used can affect the estima-

tion of AJC. Higher taxonomic resolutions, such as

genus- or family-levels, yield higher similarities than

species-level data (Guerold, 2000). Therefore, when

similarity values are used to measure data quality the

same level of taxonomic resolution should be

employed across different datasets or sites compared.

Discussion

Ecological assemblages exhibit heterogeneity in both

species composition and abundance at all spatial and

temporal scales (Kolasa & Pickett, 1991; Palmer &

White, 1994). This heterogeneity, together with the

rarity of many species, makes it challenging to

accurately or even consistently characterise assem-

blages when resources are scarce. Measures of data

quality allow us to control or at least quantify

estimates of sampling precision and accuracy. Such

estimates provide a basis for establishing the confid-

ence associated with the conclusions we draw and the

interpretations we make. The key question is how to

define and quantify data quality in a way that is both

ecologically and statistically meaningful.

We described a framework that uses autosimilarity

for measuring and controlling data quality and

showed how it could be employed for assessing the

effect of major sources of error in assemblage surveys.

In general, we believe that this novel approach is

advantageous over conventional measures of data

quality, such as SD or CV, in a number of ways.

1. It focuses on the quality of species composition

and relative abundance estimates (if an abundance-

based similarity index is used), i.e. the raw data.

Different data sets can thus be compared on the same

basis.

2. AJC combines the concepts of both precision and

accuracy together and measures assemblage data

quality with a single interpretable, ecologically mean-

ingful statistic.

3. Autosimilarity has a clearly defined range (0–1)

and can be evaluated regardless of sampling efforts

used and can be compared across regions, sites or

data sets. In comparison, CV and SD have infinite

ranges and they are specific for particular sampling

efforts (Fig. 4), which makes the comparison of data

quality across sampling effort or studies difficult.

4. Because both ordination and cluster analysis start

with a similarity matrix (Green, 1980; Legendre &

Legendre, 1998), autosimilarity is a statistically mean-

ingful measure of data quality for multivariate

analysis.

We have focused on illustrating how AJC can be

applied to a few general types of situations. Use of AJC

under specific conditions or to address specific

questions will require careful consideration of the

properties and limitations of AJC as a measure of data

Table 1 A test of random fixed-count subsampling for two Idaho sites: taxon richness and composition based on 2000 random runs

(*5% significance level)

Crew

First fixed-count

subsample

Taxa richness Jaccard coefficient

Mean 95%-Upper 95%-Lower Observed Mean 95%-Upper 95%-Lower Observed

ID-1

1 486 40.37 44 36 39 0.7223 0.7857 0.6607 0.6964

2 522 42.12 46 38 43 0.6179 0.6765 0.5588 0.6613

3 570 37.52 41 34 39 0.7499 0.8200 0.6800 0.6954

4 509 37.57 41 34 35 0.6598 0.7193 0.5965 0.6753

5 557 43.10 47 39 38* 0.7561 0.8246 0.6842 0.6736*

6 446 37.86 41 34 35 0.7260 0.8039 0.6667 0.6755

ID-2

1 473 35.27 39 31 36 0.5786 0.6393 0.5082 0.5902

2 429 34.48 39 30 38 0.6151 0.6786 0.5357 0.6325

3 428 32.26 36 29 32 0.5653 0.6316 0.4912 0.6092

4 466 33.94 38 30 35 0.5248 0.6000 0.4615 0.5900

5 437 35.23 39 31 36 0.5987 0.6780 0.5254 0.5781

6 447 36.03 40 32 35 0.6289 0.7018 0.5614 0.5620
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quality. Of the several possible questions that may

require additional attention, we discuss three below.

The majority of species in natural assemblages are

rare, and therefore the AJC or %TSR reached is

necessarily associated with the number of rare species

captured. The role of rare species in community

analysis and aquatic bioassessment is an active area

of debate (e.g. Faith & Norris, 1989; Cao, Williams &

Williams, 1998; Marchant, 1999; Cao, Larsen & Thorne,

2001a). Ecologists usually cannot and may not need to

capture every species when studying factors that

structure natural assemblages or when assessing if

human activities affect assemblages. In bioassessment

studies, assessments based on data with a low AJC,

which excludes most rare species, would likely detect

major effects of disturbances. However, the confidence

associated with rejecting a no-impact hypothesis based

on a small proportion of the species pool, i.e. a low

AJC, may deserve serious consideration.

In many respects, it would be useful to adjust

conventional sampling effort ‘on the fly’ while in the

field so that all samples have similar values of AJC.

For large-sized taxa, such as trees, birds and fish,

species can be identified on site by trained crews, and

AJC could thus be calculated while in the field to

determine when sampling should stop. For benthic

invertebrates, plankton and other small-sized taxo-

nomic groups, decisions regarding when to stop

sampling cannot be made in the field because the

identification of most taxa is done in a laboratory. A

possible solution is to over-sample, bring a large

amount of sampled material to the laboratory, and

then standardise sub-sampling of the materials on

AJC. Laboratory processing would involve sequential

identification of several subsamples and continue

until a targeted AJC was reached. A simple random-

isation program for calculating AJC can be run on a

computer in the field or laboratory.

One further question is the relative importance of

different potential sources of error in assemblage

surveys. Consistently characterising the assemblage at

regional and site-scales appears most prone to error

because the cost to access and sample a site results in

a relative small number of sites being sampled (low

AJC). After samples are transported to the laboratory,

the cost of sub-sampling is relatively low and a higher

AJC should and can be reached than that produced

by 100–200 count subsamples. For taxonomic identi-

fication, the highest AJC standard should be applied.

Unfortunately, there is no method available to meas-

ure overall data quality, i.e. the combined effects of

all different sources of error. Such a measure might

be expressed as a product of AJC across three key

factors: the number of sampling sites, sampling effort

at each site and the accuracy of taxa identification. For

example, if we reach an AJC of 0.95 for taxon

identification, 0.75 at the site-scale and 0.50 at the

regional-scale, the overall data quality would be

0.95 · 0.75 · 0.50 ¼ 0.36. Other factors, such as sample

collectors and sub-sampling may further influence data

quality. Future studies should quantify the relative

importance of different survey steps and other sources

of error on data quality. With strict data-quality control

in assemblage surveys, ecologists will be able to obtain

a clearer picture of ecological patterns and more

accurate and precise bioassessments.
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